Hakubi Center

Kyoto University, Yoshida-Ushinomiya-cho, Sakyo-ku, Kyoto 606-8501, Japan

Department of Mathematics

Kyoto University, Kitashirakawa Oiwake-cho, Sakyo-ku, Kyoto, 606-8502, Japan

- On the lifting of Hilbert cusp forms to Hilbert-Siegel cusp forms (with Tamotsu Ikeda).
- On the lifting of Hilbert cusp forms to Hilbert-Hermitian cusp forms.

- Determination of holomorphic modular forms by primitive Fourier coefficients. Math. Ann.
**344**(2009) 853-862. - On newforms for Kohnen plus spaces (with Masaru Ueda). Math. Zeit.
**264**(2010) 1-13. - Maass relations in higher genus. Math. Zeit.
**265**(2010) 263-276. - On the lifting of elliptic cusp forms to cusp forms on quaternionic unitary groups. J. Number Theory
**130**(2010) 2480-2527. - On the Siegel-Weil formula: The case of singular forms. Compos. Math.
**147**(2011) 1003-1021. - Degenerate principal series representations for quaternionic unitary groups. Israel J. Math.
**185**(2011) 77-124. - On the Siegel-Weil formula for quaternionic unitary groups. Amer. J. Math.
**135**(2013) 1383-1432. - The Siegel-Weil formula for unitary groups. Pacific J. Math.
**264**(2013) 235-257. - An explicit formula for Fourier coefficients of Eisenstein series attached to lattices. Ramanujan J. Math.
**31**(2013) 315-352. - L-functions and theta correspondence for classical groups. Invent. Math.
**196**(2014) 651-732. - Symplectic periods of the continuous spectrum of GL(2n). Ann. Inst. Fourier
**64**(2014) 1561-1580. - On poles of the exterior cube L-functions for GL(6). Math. Zeit.
**279**(2015) 267-270. - Periods of residual automorphic forms. J. Funct. Anal.
**268**(2015) 1078-1104. - Periods of automorphic forms: the case of (GL(n+1)~GL(n),GL(n)) (with Atsushi Ichino). Compos. Math.
**151**(2015) 665-712. - Periods of automorphic forms: the trilinear case. J. Inst. Math. Jussieu, to appear.
- Periods of automorphic forms: the case of (U(n+1)~U(n), U(n)) (with Atsushi Ichino). J. Reine Angew. Math., to appear.
- Siegel series for skew Hermitian forms over quaternion algebras. Abh. Math. Sem. Univ. Hamburg, to appear.
- Local symmetric square L-factors of representations of general linear groups. Pacific J. Math., to appear.
- Twisted symmetric square L-functions and invariant trilinear forms (with Eyal Kaplan). Math. Z., to appear.