SOAR Seminar
(South Osaka Automorphic Representation Seminar)

南大阪保型表現セミナー
2019 年 11 月 24 日 (日)

大阪市立大学杉本キャンパス 理学部 F 棟 4 階 F415(中講究室)

http://www.osaka-cu.ac.jp/ja/about/university/access#sugimoto (12 番が理学部棟)

世話人：山名 俊介 (大阪市立大学)

プログラム

11月24日
9:30 – 10:30 山名 俊介 (大阪市立大学)
A twisted Ichino formula.

10:45 – 11:45 森本 和輝 (神戸大学)
On Gan-Gross-Prasad conjecture for (U(2n), U(1)) and (SO(5), SO(2)).

13:15 – 14:15 角瀨 寛隆 (京都大学)
The Doubling γ-factor over Local Function Fields.

14:30 – 15:30 Erez Lapid (Weizmann Institute of Science)
On Bernstein’s proof of the meromorphic continuation of Eisenstein series.

アブストラクト

山名 俊介

Let π_i be an irreducible cuspidal automorphic representation of $GL_2(\mathbb{A})$ with central character ω_i, where \mathbb{A} is an adèlle ring of a number field. When the product $\omega_1 \omega_2 \omega_3$ is the trivial character of \mathbb{A}^\times, Atsushi Ichino proved a formula for the central value $L(\frac{1}{2}, \pi_1 \times \pi_2 \times \pi_3)$ of the triple product L-series in terms of global trilinear forms that appear in Jacquet’s conjecture. I will extend this formula to the case when $\omega_1 \omega_2 \omega_3$ is a quadratic character. This is a joint work with Ming-Lun Hsieh.

森本 和輝

Gan, Gross and Prasad conjectured a relationship between non-vanishing of certain periods and non-vanishing of central values of certain tensor product L-functions. In this talk, I will show this conjecture in the case of $(U(2n), U(1))$ for tempered cuspidal automorphic representations. Moreover, I will show a similar result for (SO(5), SO(2)) using the case of $(U(4), U(1))$. This is a joint work with Masaaki Furusawa.
The analytic definition of the standard local γ-factor of irreducible representations of classical groups over p-adic fields has been established by using the doubling method. In this talk, we discuss about the case of local function fields, and give the analytic definition of standard local γ-factor.

Erez Lapid

We present a proof of the meromorphic continuation of Eisenstein series constructed from an arbitrary automorphic form. The proof, unlike previous ones, does not use spectral theory, but only rudimentary Fredholm theory (in the number field case).